US009292341B2

a2 United States Patent

US 9,292,341 B2
Mar. 22, 2016

(10) Patent No.:
(45) Date of Patent:

Fiedel et al.
(54) RPC ACCELERATION BASED ON
PREVIOUSLY MEMORIZED FLOWS
(71) Applicant: GOOGLE INC., Mountain View, CA
(US)
(72) Inventors: Noah Fiedel, Mountain View, CA (US);
Jeremy Nelson, Ultimo (AU)
(73) Assignee: GOOGLE INC., Mountain View, CA
(US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 49 days.
(21) Appl. No.: 14/055,463
(22) Filed: Oct. 16, 2013
(65) Prior Publication Data
US 2015/0106827 Al Apr. 16, 2015
(51) Imt.ClL
GO6F 9/48 (2006.01)
GO6F 9/54 (2006.01)
(52) US.CL
CPCcccee. GO6F 9/4843 (2013.01); GO6F 9/547
(2013.01)
(58) Field of Classification Search
None
See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS
8,010,954 B2* 82011 Littleetal.cceoonee. 717/149
2009/0106219 Al* 4/2009 Belknapetal. 707/4

Ingest Request
Generate Fingerprint
9010

Cloud
(clients)

9000

Lookup
Memorized
RPCs.

9030

Start all RPCs.
in Parallel
9040

heck Cache
for fingerprint
match?
9020

Start Normal
{Serial) Request
Flow
9050

2009/0319600 Al* 12/2009 Sedanetal. ... 709/203
2010/0242055 Al* 9/2010 Aguilera et al. .. 719/330
2013/0159719 Al* 6/2013 Haetal. ..o 713/176

FOREIGN PATENT DOCUMENTS

EP 0961210 A1 12/1999

OTHER PUBLICATIONS

Ren Q., Dunham M. H., Kumar V., “Semantic Caching & Query
Processing,” IEEE Transactions on Knowledge & Data Engineering
15:1:192-210 (Jan.-Feb. 2003).

* cited by examiner

Primary Examiner — Umut Onat
(74) Attorney, Agent, or Firm — Birch, Stewart, Kolasch &
Birch, LLP

(57) ABSTRACT

Techniques for acceleration of remote procedure calls are
disclosed. Such techniques include steps of receiving a con-
tent request, the content request including at least one data
request for information from a database; analyzing the
received content request; and determining whether the ana-
lyzed content request includes at least one data request that
can be separately executed in parallel with execution of the
received content request. In response to a determination that
at least one data request that can be separately executed in
parallel, initiating the execution of the parallel data request;
receiving the requested data in response to that data request;
locally storing the received requested data; and providing the
stored received requested data in response to execution of the
received content request.

11 Claims, 7 Drawing Sheets

]

Execute RPC
calling in serial.
9060

and Dy
Attaching Stub
8070

RPC Instrumented

Stub
already
exists?
9130

1

Request Flow

Completes
{caller given
result)
9080

Start RPC and No
Record for [
Memorization

Stub RPC
Completed?
9170

9150

Memoization
Modute Invoked

Persist (Cache)
Memorized

Yes Metadata

9120

No-Op
No 1 9110

hanged
(or new)
Memorized
Query?
9100

Block Caller
and wait for
existing /
pending RPC
9160

Return Cached
Query Result
9140

U.S. Patent Mar. 22, 2016 Sheet 1 of 7 US 9,292,341 B2

. Perform Request Evaluate Analysis
Receive Request .
Analysis R Results
1001 1010 1020
X Yes
Predictables
\\ 1030 Yes
™S
Initiate Predicted v
No Requests
Update |
1040 Prediction Data |
1060
v ¥
Process Received Receive and
Requests Cache Results
1
1050 1070

Cached RetuRrenSS;zhed
Results YesP
1080// 1090
No
) 4

Execute and

© Return Request
Result
1099

Fig. la

U.S. Patent Mar. 22, 2016 Sheet 2 of 7 US 9,292,341 B2

Receive Request Generate Compare to
g Request . Stored
Signature "l Signatures
2001 2010 2020
Record Signature ,//
e ?
- M
2030 \r o
Yes
, ¥
Run Parallel
Requests
\ 4 2050
Process Received
Requests
R
2080 Cached eturn Cached
Result? Yeos—3r
2070 2060
A
No
A4 h 4
Return Request Receive and
Result Cache Results
2099 2090

Fig. 1b

U.S. Patent Mar. 22, 2016 Sheet 3 of 7 US 9,292,341 B2

Request Signature

3001

Application ID

3010

Target Address

3020

First RPC Target
3030 3040
Second RPC |Target
3060 3050
Nth RPC Target
3070 3080

Fig. 2

U.S. Patent

Mar. 22, 2016

Sheet 4 of 7

Data Access Device

S

4001
Application(s) Web Browser ;
4010 4020 |
CPU(s) Memory Device(s)
4040 4030
PN
T n = T s O e, —
— 2 8
S = | Network | 3
- — § 4320 §
\.\ ________ —~ @ L I &) o e
Web Server Request
4101 Processing |«
Memory 4140
Device(s) x
4110
vV' A 4
RPC Cached Data
CPU(s) Automation &>
4120 4130 4150
P Z e = o R) % u § -
< S 12 Network |3 3
< 4 S 2 g
\\"\“1 P i 4310 § s
\\ B 8 s 8’ e g — &) """""
S~ TN
Data Center
4201 Front End
Memory 4230
Device(s)
4210 Application(s)
CPU(s) 4240
4220
Database(s)
4250

Fig. 3

US 9,292,341 B2

U.S. Patent Mar. 22, 2016 Sheet 5 of 7 US 9,292,341 B2

Data Cé;lter Web Server { Data Access Device
7201 7101 ‘ 7001
—
N\ TN Sequest ’ Request |
VAR Signature | ! ;
[: Generated |
| I Created | 7010 !
i | 7110 i ;
; - — 3
N
/ \ Matching
/ | Signature
! | Found
[! 7120 |
| | !
\ | \ |
,-') " Unique | Unique /,/ g‘
/ { RPCs | RPCs / |
| \ | | Trigger | Trigger | \\
P ||| edin | edin | \
| © 8 l] Parallel | Parallel 4 g 8 |
RPC Requests 2 N 7130 | 7160 | o |
L d M~ | | = ™~ i 5]
Received | |, Y ‘ I] - ! g
R T V2 | A
210 ‘\ | 17190 | | =
\ } RPC Automation \ /
‘# / / 4 / i
/ ! [!
RPCs Processed ;' { Process || | {
‘ \ Request | | \
7220 ‘f ! 7170 “ |
\, \ !
i | | |
\ | \ }
RPC Results \‘ | | |RPC Results 8) /
Returned j / .| Cached 3 : /
T [/ 1 Locally R GEtIt i 1‘\ | r,/
VoA esults | VA
7230 (VI 7140 3 i |
\/ l 7180 | Vi
3 i
‘ A 4
! Results
| Returned/ .| Result Received
| Provided - 7020
| 7150 N /

Fig. 4

U.S. Patent Mar. 22, 2016 Sheet 6 of 7 US 9,292,341 B2

Ingest Request Clou\dp\
Generate Fingerprint jc/l?t/s)j

9010 __ 9000

|

e
~Check Cach LOOkt{p
" for fingerprint Yes Memorized
match? RPCs
\\ 9020 5030
.
Y
INo Start all RPCs
3 in Parallel
oy
Start Normal <+—— 9040
(Serial) Request
Flow
9050

¥

RPC Instrumented | Stub
and Dynamically already
Attaching Stub exists?
9070 9130

Execute RPC
calling in serial.
9060

|

Request Flow

Completes Start RPC and No
(caller given Record for ijbl:tpe%?
result) Memarization " '
9080 9150 i
v k
Memoization \NO
Module Invoked i
9090
Persist (Cache) Block Call
. ock Caller
l Memorized and wait for Return Cached
P Yes Metadata Query Result
. o existing /
/fhange > 9120 9140
P pending RPC
p {or new) 9160
Memorized
Query?
9100 No-Op
9110

US 9,292,341 B2

Sheet 7 of 7

Mar. 22, 2016

9 814
(06s) A (T#S) SNG IDV4YILNI IDVHOLS V
ERINEN ; o S =% ,
ONILNdINOD
YIH10 _ Ent L1
- “EN iy | (agH “8-9) (ana/ad “8-9)
\ (ovs) | (z5S) 3IDVYHOlS (195) 3IDVHOLS |
x 4 ¥ITIONINOD M J19VAONIY-NON TAVAOWIY
A VI 30v4yaLnNi/sng
{z89) (189) T
(S)dod (7)) ¥3TI0HMINOD . N
‘WWOD H4OMLAN A (0£5) SNG AYOWIIN
[085) S301AIA NOILYOINNININOD sl
| (515) (57S) V1va IDIANIS
(2£5) TO¥LNOD _ | MITIOYLNOD AYOWIW
IDV4YIALNI Z <
(€15) ETveYd] J L (725 VIVA WNv9504d
ot >
(4 (s)L¥od Q (VTS) S¥ALSIDIY
o (1£5) TOYINOD @
N &
— m_U.‘_M\cw__Mmm__MZ_ = (€19) dsa/nd4/nv (£2S) NOILVZIWILLO
g 3¥0D YOSSID0YUd 15303y
(05T SIIVINTINT TVYIAdTgId B (
(z15) L (119) (225 NOILYDINddY
JHOVD | | 3HOWD
- mm_mmwuw_mm p - ZAAT | T73AN
f = (TZ5) W3ILSAS ONILYHIdO
(€95) olanv dsa/an/dn
7y (S)i¥od ”
INYY/INOY
{0TS) 90553004d
ANV (195) LINA 0T5) 90553704d
<> 9NISSIDOYd 1T {0ZST AHOWIW WIISAS
H SIIHAVHO (T05) NOILVANDIANGD JISva
1095) S39IAIA LNINO N [005) IOIAIA BNILNAIANOD

U.S. Patent

US 9,292,341 B2

1
RPC ACCELERATION BASED ON
PREVIOUSLY MEMORIZED FLOWS

BACKGROUND

Increasingly, in complex large-scale computing environ-
ments, dynamic user requests often result in many serialized
RPCs to different backends. These RPCs are very expensive
for engineers to optimize; optimizations add significant tech-
nical complexity and maintenance cost; and often add latency
to systems.

Even with perfectly optimized hand-coding to parallelize a
portion of these RPCs, they are still typically many serialized
blocks of RPCs. This causes increased latency and the cost of
mitigating said latency is very high in terms of engineering
time and system complexity.

SUMMARY

Embodiments of solutions discussed herein may pertain to
a system comprising: a processor; a processor-readable
memory having stored therein instructions that cause the
processor to perform a method comprising the steps of:
receiving a content request, the content request including at
least one data request for information from a database; ana-
lyzing the received content request; determining whether the
analyzed content request includes at least one data request
that can be separately executed in parallel with execution of
the received content request; in response to a determination
that the received content request includes at least one data
request that can be separately executed in parallel with the
received content request, initiating the execution of said at
least one data request in parallel with execution of the
received content request, said executing including sending
said at least one data request to at least one database for
execution; receiving requested data from said at least one
database in response to said at least one data request; locally
storing the received requested data; and providing the stored
received requested data in response to said execution of the
received content request.

In some embodiments, the content request includes two or
more data requests for information from one or more data-
bases, said two or more data requests including a first data
request and a second data request.

In some embodiments, initiating the execution includes
initiating the execution of the first data requests in parallel
with the second data request and in parallel with the received
content request.

In some embodiments, receiving requested data includes
receiving requested data in response to the first data request
and receiving requested data in response to the second data
request.

In some embodiments, sending at least one data request to
at least one database for execution includes sending said at
least one data request to a data center.

In some embodiments, analyzing includes identifying all
data requests included in the received content request.

In some embodiments, determining includes determining
whether the identified data requests match a known or previ-
ously executed set of data requests associated with aknown or
previously executed content request.

In some embodiments, analyzing includes determining
whether the received content request is substantially the same
as a previously-executed received content request; and in
response to a determination that the received content request
is substantially the same as a previously-executed received
content request, determining that the received content request

40

45

55

2

includes at least one data request that can be separately
executed in parallel with the received content request, and
initiating the execution of those data requests associated with
the previously-executed received content request in parallel
with execution of the received content request.

In some embodiments, analyzing includes generating
request signature based on the received content request.

In some embodiments, determining includes comparing
the generated request signature to one or more known or
previously-generated request signatures, the known or previ-
ously-generated request signatures each being associated
with a set of one or more known or previously-executed data
requests.

In some embodiments, the received content request
includes information about an application originating the
content request.

In some embodiments, the request signature is generated
based on the information about the application originating the
content request.

In some embodiments, determining includes comparing a
result of said analyzing against one or more known or previ-
ous analysis results, each of said known or previous analysis
results being associated with a set of one or more previously-
executed data requests.

In some embodiments, the known or previous analysis
results are stored in said processor-readable memory.

Embodiments of techniques and solutions described herein
may pertain to a method comprising some or all of the steps
described above. Embodiments of techniques and solutions
described herein may pertain to a computer-readable
medium, such as an electric, magnetic or optical storage
medium or a carrier wave, having instructions for performing
some or all of the above-described method steps embodied
thereon or therein.

Embodiments of techniques and solutions described herein
may pertain to system comprising: a processor; a processor-
readable memory having stored therein instructions that
cause the processor to perform a method comprising the steps
of: receiving a request for content from a requesting entity;
generating a request fingerprint based on the received request
for content; first determining whether the generated request
fingerprint matches a stored request fingerprint; in response
to a determination that the generated request fingerprint
matches the stored request fingerprint, initiating the remote
procedure calls associated with that stored request fingerprint
in parallel; serially executing remote procedure calls associ-
ated with the received request after said first determining step,
said serially executing including, for each of the remote pro-
cedure calls being serially executed attaching a result stub to
the remote procedure call, the result stub representing a place-
holder for a result of one of the remote procedure calls
executed in parallel; determining whether said one of the
remote procedure calls executed in parallel has completed
execution; in response to a determination that said one of the
remote procedure calls executed in parallel has completed
execution, returning a result of said one of the remote proce-
dure calls executed in parallel has completed execution to the
result stub; and in response to a determination that said one of
the remote procedure calls executed in parallel has not com-
pleted execution, suspending serial execution of the remote
procedure call until said one of the remote procedure calls
executed in parallel has completed execution and returning a
result of the completed one of the remote procedure calls
executed in parallel to the result stub; and in response to all of
said serially executed remote procedure calls having a result,
returning a request result to the requesting entity based on the
remote procedure call results.

US 9,292,341 B2

3

Further scope of applicability of the systems and methods
discussed will become apparent from the detailed description
given hereinafter. However, it should be understood that the
detailed description and specific examples, while indicating
embodiments of the systems and methods, are given by way
of illustration only, since various changes and modifications
within the spirit and scope of the concepts disclosed herein
will become apparent to those skilled in the art from this
detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

The systems and methods discussed will become more
fully understood from the detailed description given herein
below and the accompanying drawings that are given by way
of illustration only and thus are not limitative.

FIG. 1a shows a block diagram representing an embodi-
ment of an RPC acceleration operation as described herein;

FIG. 15 shows a block diagram representing an embodi-
ment of an RPC acceleration operation as described herein;

FIG. 2 shows a block diagram representing an embodiment
of'an RPC signature as described herein;

FIG. 3 shows a block diagram representing an embodiment
of data flows between a data access device and a data center as
described herein;

FIG. 4 shows a block diagram representing an embodiment
of data flows between a data access device and a data center as
described herein;

FIG. 5 shows a block diagram representing an embodiment
of'an RPC acceleration operation as described herein; and

FIG. 6 shows a block diagram representing an embodiment
of'a computing device arranged to carry out some or all of the
RPC acceleration or automation operations described herein.

The drawings will be described in detail in the course of the
detailed description.

DETAILED DESCRIPTION

The following detailed description refers to the accompa-
nying drawings. The same reference numbers in different
drawings identify the same or similar elements. Also, the
following detailed description does not limit the concepts
discussed. Instead, the scope of the concepts discussed herein
is defined by the appended claims and equivalents thereof.

Techniques and systems disclosed herein pertain to devices
and methods meant to instrument requests on a running sys-
tem, learning the patterns of inbound requests (client Remote
Procedure Calls—RPCs) as well as dependent RPC request
flows (downstream or fanned-out RPCs). The learning could
be heuristic based, regression based, or memorization based.
An embodiment of a workflow depicting an instrumented
request interception and RPC automation process is shown in
FIG. 1a.

In the embodiment shown, a request may be received 1001
at, for example, a local web server. The web server may be
equipped with hardware, software, or a combination thereof
that performs analysis on the request 1010. Embodiments of
such analysis may include heuristic analysis to match the
request against known or expected patterns. Embodiments of
such analysis may include a memo- or hash-based analysis to
generate a signature or hash key based on the request and
some or all of the data included therein or associated there-
with.

The analysis results may then be evaluated 1020 to deter-
mine whether the web server or the RPC automation software
or hardware included or associated therewith can predict
1030 the types of RPCs the request will require before the

10

15

20

25

30

35

40

45

50

55

60

65

4

web server has fully processed the received request. The
analysis results may also be used to update data used for
future predictions 1060. Such data may include changing
weights or thresholds associated with rules or estimation
algorithms. In some embodiments, such data may include
new or additional request signatures or hash keys for evalu-
ating future requests.

In some embodiments, analyzing the request 1010 or
evaluating the analysis results 1020 may also include making
a determination as to whether the request is a candidate for
RPC prediction or automation. In such embodiments, each
analyzed request may be compared to a threshold amount of
RPC calls or database queries to determine whether the
request is a candidate for RPC automation as discussed
herein.

If a request is determined to not be predictable 1030 or
otherwise not a suitable candidate for RPC automation, the
request may be processed normally 1050 with the various
RPCs and/or database queries of the request processed in
sequential order. If a request is determined to be predictable
1030 or otherwise a suitable candidate for RPC automation, a
group of RPCs or database queries predicted or otherwise
determined to be associated with the received request may be
initiated 1040 in parallel. These RPCs and queries may go out
to data centers and databases and data stores which then send
results back to the system processing the initial request. The
system, which may be a web server in some embodiments,
receives and caches the results of the RPCs and queries 1070.

In some embodiments, after the parallel RPCs are initiated
1040, the web server may continue processing the incoming
request normally 1050 as though the RPCs or queries therein
will be sequentially addressed. However, upon encountering
an RPC or query in the request, the system may first check to
see if any cached results 1080 to that RPC or query are
available based on the results received and cached 1070 from
the initiated 1040 parallel RPCs and queries. If a cached result
is available 1080, the cached result may be returned 1090 in
response to the request, thereby eliminating or mitigating any
latency that may otherwise be incurred by or associated with
that request. If a cached result is not available 1080, the RPC
or query from the request may be executed and a result thereof
returned 1099.

The above-described embodiment relates to either heuris-
tic- or memorization-based embodiments of an RPC automa-
tion system. A heuristic-based embodiment may include rules
and rule sets that enable a system to determine or derive,
based on an incoming RPC, what sorts of subsequent/addi-
tional/embedded RPCs may be included in, associated with,
or following the incoming RPC. The determined or derived
RPCs may then be triggered for execution before the subse-
quent/additional/embedded RPCs are processed and the
results of those triggered RPCs may be cached locally at the
system that received the incoming RPC. Thereby, when the
actual subsequent/additional/embedded RPCs associated
with the incoming RPC are processed by that system, the
results of, for example, any database queries associated with
those RPCs are already locally cached and available to be
immediately provided in response to the RPC.

In a memorization-based embodiment, a system that
receives incoming RPCs may record a signature of each
inbound request. In some embodiments, requests may be
analyzed to identify high-latency and/or RPC expensive que-
ries. Embodiments of a recorded signature may include things
like the user-id making the request, as well as components of
the request such as a destination address (e.g. a website
address/URL) and/or any target database(s). Using the
recorded signature, it is possible to have an automated instru-

US 9,292,341 B2

5

ment all read-only (non-mutating) RPCs made downstream
during a request, and write-back all required metadata to
reproduce/re-invoke those RPCs at a later date, and cache said
metadata using a key based on the request signature.

Whenever processing one of these expensive requests, the
automated system may, in some embodiments, intercept the
request, generate a request signature, look-up the cached/
memorized downstream RPC metadata, and fire all down-
stream RPCs associated with that request signature in paral-
lel. In some embodiments, such downstream RPC execution
may be realized before the normal application control-flow
was even invoked. In some such embodiments, the automated
system may insert per-request stubs between the application
control-flow and the downstream RPC calling code. In some
such embodiments, whenever the application code creates or
causes a new RPC, the automated system may be configured
to intercept that RPC. If the captured RPC matches one of the
already triggered & parallel RPCs, the automated system may
then simply attach that already-existing RPC and results to
the application RPC stub.

An embodiment of a workflow depicting a memorization-
based embodiment an instrumented request interception and
RPC automation process is shown in FIG. 15. In the embodi-
ment shown, after a request is received 2001 by, for example,
a web server, specialized software or hardware or a combi-
nation thereof operating on or associated with the web server
may generate a request signature 2010 from the received
request. In some embodiments, specialized software may be
operating on a separate computer system that the web server
exchanges data with. In some embodiments, the web server
and the specialized software for RPC automation may both be
represented as part or all of one or more virtual or logical
computing devices operating on one or more physical data
processing platforms. Although described with respect to a
web server, embodiments of the techniques and solutions
described herein may be applicable to any software or hard-
ware making RPC calls to a back-end or to stand-alone or
client applications or systems.

The generated request signature may represent a memo or
hash value based on the received request and any attribute of
the received request, such as, for example, parameters
thereof. In some embodiments, request attributes may include
an IP or MAC address of a requesting device, headers, or
parameters such as an identifier of a user account and/or an
originating device associated with the request. Examples of
anoriginating device may include a mobile data access device
such as a tablet or smartphone or a computing device such as
a laptop or desktop computer or a physical or virtual server or
cloud-based computing resource. In some embodiments, a
request may include an attribute or parameter identifying an
application originating the request. For example, a request
originated from a particular web browser, game, or produc-
tivity application may have an attribute or parameter indicat-
ing that particular web browser, game, or productivity appli-
cation as the originating application.

In some embodiments, a request signature may be gener-
ated by a hash function. In some embodiments, custom
request-hash functions may be used to confine the key space
to a small/reasonable size. E.g. a request with a parameter
used for logging but not for any behavior of the request could
have a custom hash function that does not include such a
parameter. Embodiments of such hash functions can be com-
pletely custom, based on whitelisted parameters/attributes of
a request, or based on a blacklist of parameters/attributes to
exclude from the request hash.

After the request signature is generated 2010, the generated
signature may be compared 2020 to stored or known request

10

15

20

25

30

35

40

45

50

55

60

65

6

signatures. Each stored or known request signature may be
associated with a particular set of RPCs or queries or a com-
bination thereof. In some embodiments, a known request
signature may be used as a database or data table key to
retrieve a record indicating which RPCs and/or queries
should be triggered by that request signature. In some
embodiments, such a database or data table may be stored
locally or accessed by the device receiving the incoming
request.

Ifthe generated request signature matches 2040 a known or
stored request signature, the RPCs or queries associated with
that know or stored signature may be executed at least par-
tially in parallel 2050. In some embodiments, one or more
unique RPCs associated with the matching request may be
simultaneously triggered or otherwise executed without wait-
ing for or being dependent on resolution of or results from a
different RPC.

In some embodiments, a memorization process would have
stored all applicable RPCs made in a previous request flow,
even including, in some embodiments, those which are logi-
cally not triggered until after an earlier (serial) request is
made. In some such embodiments, all RPCs included in a
request may be started in parallel. In some embodiments, in
order to allow for resource optimization and to provide
request isolation across such memorized RPC sessions, there
may be several modes of scheduling these RPCs. In one
embodiment, all such RPCs may be run in parallel on asyn-
chronous connections, with no blocking threads. In another
embodiment, all such RPCs may be run in a threadpool. In
some such embodiments, the outbound RPCs for a request
can be isolated across inbound requests by rate-limiting or
quotaing. For example, in a threadpool embodiment of size
100, each inbound request might only be able to schedule
RPCs on 20 threads at a time with others blocking for avail-
able threads.

If the generated request signature does not match 2040 a
known or stored request signature, that generated request
signature may be recorded or otherwise stored 2030 for later
use or retrieval. In some embodiments, only those signatures
associated with requests exceeding a certain complexity
threshold may be selected for storage or recordation. In some
embodiments, the determination of whether to persist (cache)
the outbound memorized RPC signatures may be done at the
end (after completion) of an instrumented request. In some
such embodiments, this allows for collection or creation of
information about the number of RPCs, their durations, sizes,
and other metadata. In some such embodiments, a complexity
threshold may be established by setting a minimum number
of outbound RPCs for which to memorize (store/cache) the
request. In some embodiments, a minimum threshold of 2
outbound RPCs may be set as the complexity threshold. In
such embodiments, any request with two or more outbound
RPCs may be selected for storage or recordation to allow for
subsequent instrumentation or acceleration using embodi-
ments of the techniques described herein. Further embodi-
ments may employ different thresholds or threshold ranges,
such as, for example, a threshold range of 2 to 9 outbound
RPCs.

In some embodiments, a request signature selected for
recordation may also have its execution monitored to deter-
mine which RPCs or queries are associated with the request
and any dependencies related thereto. In some embodiments,
such execution monitoring may occur as part of, or in con-
junction with, processing of the received request 2080 to
return a request result 2099. In some embodiments, the
request may be a request for a web page having content from

US 9,292,341 B2

7

a database included therein, and the returned request may be
the web page populated with the database information.

In some embodiments, after triggering the parallel RPCs
and/or queries, the system may start looking for cached
results 2070 to provide in response to the received request.
Once the results of the individual parallel-ly triggered RPCs
are received and cached 2090, those cached results may be
returned 2060 in response to the received request.

In some embodiments, such a solution is completely auto-
matic, allowing it to perform more quickly and more accu-
rately than human-written RPC parallelization code. Such
automated RPC recording and parallelization techniques may
allow for latency improvements in request execution and may
also provide some level of isolation from cross-datacenter
RPC latency during partial datacenter failures. Furthermore,
some embodiments may allow for reductions in code/system
complexity around managing complex parallelism data struc-
tures.

An embodiment of a block diagram depicting an embodi-
ment of a data record including a request signature is shown
in FI1G. 2. Inthe embodiment shown, a data record such as one
included in a data table or database, may include a request
signature 3001. In some embodiments, such a request signa-
ture may be a primary key or similar data record retrieval or
lookup value. The request signature may be a hash key rep-
resented as a numeric or alphanumeric sequence of values. In
some embodiments, such a signature may have embedded
therein information representing a user ID, application 1D,
and/or requesting device ID associated with the request. In
such embodiments, the hash signature may provide a unique
identifier for the request using a one-way hash that would
render any information such as a user ID or requesting device
1D unrecoverable from the request signature.

In some embodiments, a second identifier such as an appli-
cation ID may be stored in the data record. In some embodi-
ments, the application ID may identify whether the request
represented by the record is from a first browser application
associated with a first operating system or a second browser
application associated with a second operating system. In
some embodiments, a lookup key for the data record may be
represented as a combination of the request signature 3001
and a second identifier such as the application 1D 3010.

In some embodiments, the data record representing the
request may also include information about a target address
3020, such as a web page URL or IP address associated with
the request. In some embodiments, such target address 3020
information may be embedded in the request signature
instead of being separately stored in the data record.

In some embodiments, the data record may also include a
listing or record of the various and/or multiple RPCs 3030,
3060, 3070 or queries associated with the request. In some
embodiments, each RPC or query of the request may be
associated with, or otherwise include, information about a
target back-end 3040, 3050, 3080 from which the data is to be
queried or on which the RPC is to be executed. In some
embodiments, a data record may have an arbitrary number of
RPCs or queries.

FIG. 3 depicts an embodiment of a web server equipped
with RPC automation capability as described herein commu-
nication with a data access device and a data center. In the
embodiment shown, a data access device 4001 such as a
smartphone, tablet, laptop, desktop, or virtual computing
resource may be equipped with or associated with one or
more processors 4040 and some amount of volatile or non-
volatile memory 4030 or some combination thereof. The data
access device 4001 may be running or accessing one or more

20

25

30

35

40

45

50

55

60

65

8

applications 4010 and/or a web browser 4020 or other net-
work data access and exchange tool or interface.

The data access device may, via the application(s) 4010 or
the web browser 4020 generate a request 4050 for content
such as a request for a web page or a request for particular
data. Such a request may be sent, via a network 4320, to a
request processing device such as a web server 4101 (in the
case of a request for a web page, for example). In some
embodiments, the network 4320 may include or otherwise be
connected to the Internet. In some embodiments the network
may include a private network, a virtual private network, a
cellular data network, a wired network, wireless data trans-
mission, fiber-optic data transmission, or combinations
thereof.

A request 4050 from the data access device 4001 may
include or require one or more RPCs or queries to a database
in order to provide the requested data or populate a web page.
For embodiments related to web page requests, the request
4050 may be received by a web server 4101. Embodiments of
a web server may include one or more physical or virtual
computing devices equipped or associated with one or more
processors 4120 and some amount of volatile or non-volatile
memory 4110 or some combination thereof.

In some embodiments, the web server may be equipped
with capabilities for request processing 4140 and RPC auto-
mation 4130 as described herein. Embodiments of a web
server may also include a memory or data storage region
where cached data 4150 may be kept.

In some embodiments, a received request 4050 may be
intercepted at the web server 4101 by the RPC automation
4130 capability in order to determine whether, as the request
is being processed by the request processing capability of the
web server 4140 (or, in some embodiments, before request
processing 4130 is even initiated), certain queries or RPCs
can be identified and triggered in parallel before the request
4050 indicates a need for those queries of RPCs to be
executed. In some embodiments, such RPC automation 4130
capability may cause multiple simultaneous or near-simulta-
neous requests 4160 4170 to be sent from the web server 4101
to one or more data centers 4201 via a communication link
such as a network 4310.

In some embodiments, the network 4310 may include or
otherwise be connected to the Internet. In some embodiments
the network may include a private network, a virtual private
network, a cellular data network, a wired network, wireless
data transmission, fiber-optic data transmission, or combina-
tions thereof. In some embodiments, the web server 4101 may
be a virtual machine within a data center 4201.

In some embodiments, a data center 4201 may include a
device, group of devices, or facility equipped with or includ-
ing one or more processors 4220 and some amount of volatile
and/or non-volatile memory 4210. The data center 4210 may
include one or more front end features 4230 such as query or
RPC interface(s), one or more application(s) 4240 running in
the data center, and one or more database(s) or data tables
4250 storing information for use by and access from the data
center 4201.

In some embodiments, the data center 4201 may receive
the requests 4160 4170 from the web server 4210 via the front
end 4230 and process the received requests through one or
more applications 4240 to identify and retrieve desired infor-
mation from one or more databases or data tables 4250. The
retrieved information may then be provided to the web server
4101 in the form of one or more responses 4180 4190 sent
from the data center via the network 4310. In some embodi-
ments, the responses 4180 4190 may be stored at the web
server 4101 as cached data 4150 represented a pre-emptively

US 9,292,341 B2

9

or predictively acquired response to a known or expected
query or RPC associated with the request 4050 from the data
access device 4001.

In some embodiments, such cached data may be received
before or during processing of the request 4050 by the web
server 4101. In some such embodiments, the request process-
ing 4140 capability of the web server may be configured to
check the cached data 4150 for a response or result to an RPC
or query in the request 4050 before triggering that RPC or
query for execution by a downstream data center 4201. The
RPC or query result(s) may then be transmitted from the web
server 4101 to the data access device 4001 as a response 4060
sent over the network 4320.

In some embodiments, such RPC automation may also
provide the advantage ofisolating the data access device 4101
from failures in local or remote data centers 4201. By trig-
gering RPC requests predictively or pre-emptively at the web
server 4101, delays and latencies associated with data center
failures 4201 are masked from the data access device 4101.
This is so because even if the data center 4201 does experi-
ence a failure with respect to any one RPC, the added latency
of querying a different data center or different database will
notimpact any other RPCs because they are being executed in
parallel as opposed to serially.

The advantage of isolation from partial failures in local
datacenters, in a multi/distributed datacenter system, is sig-
nificant. In an exemplary system making 10 serial RPCs to a
local backend (say a database with a 10 ms response time), a
healthy datacenter may process such requests with 10x10
ms=100 ms of RPC wait time. If however the local data-
center’s backend is unhealthy, this may result in cross-data-
center RPCs. Assuming a 50 ms cross-datacenter response
time (speed of light between DCs), an unhealthy backend can
cause latency to increase from 100 ms of RPC wait time to
500 ms of RPC wait time. The automated system of request
capture and automation provides an asymptotic speed-up in
this case by making the 10 RPCs in parallel, so that even with
cross-DC RPCs, the RPC wait time is only 60 ms (10 ms
processing in parallel+50 ms cross-DC speed of light).

An embodiment showing data flows between a data access
device and a data center as described herein is depicted in
FIG. 4. In the embodiment shown, a data access device 7001
may generate a request 7010 for content that includes an RPC
or database query. Such a request may be sent, in the case of
aweb page request, to a web server 7101 over a network 7600
as described above. Upon being received by or, in some
embodiments, en-route to, the web server, the request may be
intercepted by an RPC automation feature or capability 7190.

In some embodiments, such an RPC automation capability
7190 may generate a request signature 7110 based on the
received or intercepted request from the data access device
7001. The request signature may then be compared against
other request signatures stored by or accessible to the RPC
automation capability 7190 to determine if the generated
request signature matches a known or previous request sig-
nature. If a matching request signature is found 7120, a series
ofunique RPCs may be triggered in parallel 7130, 7160 based
on the RPC associated with the matching signature. The trig-
gered unique RPCs may be sent to one or more data center(s)
7201 via a network 7700 as described previously herein. The
data center(s) 7201 may receive the RPC requests 7210 from
the web server 7101 and process the RPCs accordingly 7220
before returning the requested result(s) 7230 to the web server
7101.

Ator in conjunction with the web server 7101 the returned
RPC results may be locally cached 7140. On a time scale in
parallel with the actions governed by RPC automation capa-

10

15

20

25

30

35

40

45

50

55

60

65

10

bility 7190, the web server 7101 may process the received
request 7170 and attempt to get or otherwise retrieve the
requested RPC or query results thereof 7180. In some
embodiments, before (or instead of) making an RPC request
to a data center, the web server may look in the local cache to
see if there is already a locally available RPC or query result.
The RPC or query result(s) are then returned or otherwise
provided 7150 from the web server 7101 to the data access
device 7001, which receives the result(s) 7020 and presents or
processes them further accordingly.

FIG. 5 depicts an embodiment of a process flow related to
request generation and RPC automation as described herein.
In the embodiment shown, one or more clients 9000 in a cloud
computing environment may send requests to a request pro-
cessing system. Such clients may include applications, physi-
cal devices, virtual devices, users, automated requests, and
combinations thereof.

The request processing system may ingest or otherwise
receive the request from the client and generate a request
fingerprint 9010 therefrom. The generated fingerprint may be
compared against a cache or store of previous or predeter-
mined or known request fingerprints to determine if there is a
match 9020. In the event there is a match, the request pro-
cessing system may look up or otherwise access the memo-
rized or predetermined or known set of RPCs associated with
the matching request fingerprint 9030 and start all of those
RPCs in parallel 9040.

In some embodiments, regardless of whether the request
fingerprint matches a known or predetermined or previous
request fingerprint, after the lookup and match operation
9020 is attempted, a serial or “normal” request flow may be
initiated 9050. In such a request flow, the RPC calls in the
request may be executed serially or sequentially 9060.

In some embodiments, each of the serially called RPCs
may be instrumented and have a stub dynamically attached
thereto 9070. This allows the serially called RPC to connect
or otherwise be associated with one or more of the RPCs
previously started in parallel 9040. In some embodiments, if
the dynamically attached stub already exists 9130, a subse-
quent check may be performed to determine whether the
parallel RPC associated with that stub has been completed
9170. In some embodiments the parallel RPC has not yetbeen
completed, the parallel RPC call may be blocked or sus-
pended and the serial RPC call may be allowed to execute or
complete 9160. In some embodiments, the opposite may
occur, with the parallel RPC being allowed to complete and
the serially-called RPC being blocked or suspended until the
parallel RPC, which has already been initiated, returns a
result.

Insome embodiments, the RPC stub 9130 may not yet exist
because the RPC has not yet been initiated or because it was
not included in the set of parallel RPCs. In such an embodi-
ment, the RPC may be started and executed and, in some
embodiments, the execution of the RPC may be recorded for
memorization 9150 and later playback.

In some embodiments, the parallel RPC may already have
completed 9170, in which case a cached query result may be
returned 9140 to the dynamically attached stub, causing the
serially-called RPC to be completed or otherwise fulfilled
with previously acquired, cached data. In this manner, the
RPC request flow may be completed and a result returned to
the client 9080.

In some embodiments, after the request returns a result, a
memorization module may be invoked 9090 to create a trace
or record of the request for use for future automation or
instrumentation of RPC-bearing requests. In some embodi-
ments, the request is evaluated to determine whether it is a

US 9,292,341 B2

11

changed or new request or one that either matches a previ-
ously-recorded request signature 9100 or does not meet a
complexity threshold. In some embodiments, a changed or
new request may cause the creation and storage of memorized
metadata 9120 representing the request and it’s associated
RPCs. In some embodiments, a request that is either not
new/changed or under a complexity threshold may not trigger
such memorization and storage of metadata, causing the sys-
tem to instead do nothing 9110.

Although discussed above in terms of functionality, the
features and properties of function graph generation and call
path search may be realized through the use of one or more
specialized, programmable, and/or specially programmed
computing devices or portions thereof.

FIG. 6 is a block diagram illustrating an example comput-
ing device 500 that is arranged to perform call graph genera-
tion and call path search techniques as described herein. In a
very basic configuration 501, computing device 500 typically
includes one or more processors 510 and system memory
520. A memory bus 530 can be used for communicating
between the processor 510 and the system memory 520.

Depending on the desired configuration, processor 510 can
be of any type including but not limited to a microprocessor
(uP), a microcontroller (uC), a digital signal processor (DSP),
or any combination thereof. Processor 510 can include one
more levels of caching, such as a level one cache 511 and a
level two cache 512, a processor core 513, and registers 514.
The processor core 513 can include an arithmetic logic unit
(ALU), afloating point unit (FPU), a digital signal processing
core (DSP Core), or any combination thereof. A memory
controller 515 can also be used with the processor 510, or in
some implementations the memory controller 515 can be an
internal part of the processor 510.

Depending on the desired configuration, the system
memory 520 can be of any type including but not limited to
volatile memory (such as RAM), non-volatile memory (such
as ROM, flash memory, etc.) or any combination thereof.
System memory 520 typically includes an operating system
521, one or more applications 522, and program data 524.
Application 522 may include a call graph generation and/or
call path search feature 523 as discussed herein. Program
Data 524 includes location data such as one or more depen-
dency lists or object name lists 525 that are useful for per-
forming the desired operations as described above. In some
embodiments, application 522 can be arranged to operate
with program data 524 on an operating system 521 such that
the overall system performs one or more specific variations of
techniques as discussed herein. This described basic configu-
ration is illustrated in FIG. 6 by those components within line
501.

Computing device 500 can have additional features or
functionality, and additional interfaces to facilitate commu-
nications between the basic configuration 501 and any
required devices and interfaces. For example, a bus/interface
controller 540 can be used to facilitate communications
between the basic configuration 501 and one or more data
storage devices 550 via a storage interface bus 541. The data
storage devices 550 can be removable storage devices 551,
non-removable storage devices 552, or a combination
thereof. Examples of removable storage and non-removable
storage devices include magnetic disk devices such as flexible
disk drives and hard-disk drives (HDD), optical disk drives
such as compact disk (CD) drives or digital versatile disk
(DVD) drives, solid state drives (SSD), and tape drives to
name a few. Example computer storage media can include
volatile and nonvolatile, removable and non-removable
media implemented in any method or technology for storage

10

15

20

25

30

35

40

45

50

55

60

65

12

of information, such as computer readable instructions, data
structures, program modules, or other data.

System memory 520, removable storage 551 and non-
removable storage 552 are all examples of computer storage
media. Computer storage media includes, but is not limited
to, RAM, ROM, EEPROM, flash memory or other memory
technology, CD-ROM, digital versatile disks (DVD) or other
optical storage, magnetic cassettes, magnetic tape, magnetic
disk storage or other magnetic storage devices, or any other
medium which can be used to store the desired information
and which can be accessed by computing device 500. Any
such computer storage media can be part of device 500.

Computing device 500 can also include an interface bus
542 for facilitating communication from various interface
devices (e.g., output interfaces, peripheral interfaces, and
communication interfaces) to the basic configuration 501 via
the bus/interface controller 540. Example output devices 560
include a graphics processing unit 561 and an audio process-
ing unit 562, which can be configured to communicate to
various external devices such as a display or speakers via one
or more A/V ports 563. Example peripheral interfaces 570
include a serial interface controller 571 or a parallel interface
controller 572, which can be configured to communicate with
external devices such as input devices (e.g., keyboard, mouse,
pen, voice input device, camera, touch input device, etc.) or
other peripheral devices (e.g., printer, scanner, etc.) via one or
more 1/O ports 573. An example communication device 580
includes a network controller 581, which can be arranged to
facilitate communications with one or more other computing
devices 590 over a network communication via one or more
communication ports 582.

The communication connection is one example of a com-
munication media. Communication media may typically be
embodied by computer readable instructions, data structures,
program modules, or other data in a modulated data signal,
such as a carrier wave or other transport mechanism, and
includes any information delivery media. A “modulated data
signal” can be a signal that has one or more of its character-
istics set or changed in such a manner as to encode informa-
tion in the signal. By way of example, and not limitation,
communication media can include wired media such as a
wired network or direct-wired connection, and wireless
media such as acoustic, radio frequency (RF), infrared (IR)
and other wireless media. The term computer readable media
as used herein can include both storage media and commu-
nication media.

Computing device 500 can be implemented as a portion of
a small-form factor portable (or mobile) electronic device
such as a cell phone, a personal data assistant (PDA), a per-
sonal media player device, a wireless web-watch device, a
personal headset device, an application specific device, or a
hybrid device that include any of the above functions. Com-
puting device 500 can also be implemented as a personal
computer including both laptop computer and non-laptop
computer configurations.

In some cases, little distinction remains between hardware
and software implementations of aspects of systems; the use
ofhardware or software is generally (but not always, in that in
certain contexts the choice between hardware and software
can become significant) a design choice representing cost vs.
efficiency tradeoffs. There are various vehicles by which pro-
cesses and/or systems and/or other technologies described
herein can be effected (e.g., hardware, software, and/or firm-
ware), and that the preferred vehicle will vary with the context
in which the processes and/or systems and/or other technolo-
gies are deployed. For example, if an implementer determines
that speed and accuracy are paramount, the implementer may

US 9,292,341 B2

13

opt for a mainly hardware and/or firmware vehicle; if flex-
ibility is paramount, the implementer may opt for a mainly
software implementation; or, yet again alternatively, the
implementer may opt for some combination of hardware,
software, and/or firmware.

The foregoing detailed description has set forth various
embodiments of the devices and/or processes via the use of
block diagrams, flowcharts, and/or examples. Insofar as such
block diagrams, flowcharts, and/or examples contain one or
more functions and/or operations, it will be understood by
those within the art that each function and/or operation within
such block diagrams, flowcharts, or examples can be imple-
mented, individually and/or collectively, by a wide range of
hardware, software, firmware, or virtually any combination
thereof. In one embodiment, several portions of the subject
matter described herein may be implemented via Application
Specific Integrated Circuits (ASICs), Field Programmable
Gate Arrays (FPGAs), digital signal processors (DSPs), or
other integrated formats. However, those skilled in the art will
recognize that some aspects of the embodiments disclosed
herein, in whole or in part, can be equivalently implemented
in integrated circuits, as one or more computer programs
running on one or more computers (e.g., as one or more
programs running on one or more computer systems), as one
Or more programs running on one or more processors (e.g., as
one Or more programs running on one or more microproces-
sors), as firmware, or as virtually any combination thereof,
and that designing the circuitry and/or writing the code for the
software and or firmware would be well within the skill of one
of'skill in the art in light of this disclosure. In addition, those
skilled in the art will appreciate that the mechanisms of the
subject matter described herein are capable of being distrib-
uted as a program product in a variety of forms, and that an
illustrative embodiment of the subject matter described
herein applies regardless of the particular type of signal bear-
ing medium used to actually carry out the distribution.
Examples of a signal bearing medium include, but are not
limited to, the following: a recordable type medium such as a
floppy disk, a hard disk drive, a Compact Disc (CD), a Digital
Video Disk (DVD), a digital tape, a computer memory, etc.;
and a transmission type medium such as a digital and/or an
analog communication medium (e.g., a fiber optic cable, a
waveguide, a wired communications link, a wireless commu-
nication link, etc.).

Those skilled in the art will recognize that it is common
within the art to describe devices and/or processes in the
fashion set forth herein, and thereafter use engineering prac-
tices to integrate such described devices and/or processes into
data processing systems. That is, at least a portion of the
devices and/or processes described herein can be integrated
into a data processing system via a reasonable amount of
experimentation. Those having skill in the art will recognize
that a typical data processing system generally includes one
or more of a system unit housing, a video display device, a
memory such as volatile and non-volatile memory, proces-
sors such as microprocessors and digital signal processors,
computational entities such as operating systems, drivers,
graphical user interfaces, and applications programs, one or
more interaction devices, such as a touch pad or screen,
and/or control systems including feedback loops and control
motors (e.g., feedback for sensing position and/or velocity;
control motors for moving and/or adjusting components and/
or quantities). A typical data processing system may be
implemented utilizing any suitable commercially available
components, such as those typically found in data computing/
communication and/or network computing/communication
systems.

10

15

20

25

30

35

40

45

50

55

60

65

14

With respect to the use of substantially any plural and/or
singular terms herein, those having skill in the art can trans-
late from the plural to the singular and/or from the singular to
the plural as is appropriate to the context and/or application.
The various singular/plural permutations may be expressly
set forth herein for sake of clarity.

Only exemplary embodiments of the systems and solutions
discussed herein are shown and described in the present dis-
closure. It is to be understood that the systems and solutions
discussed herein are capable of use in various other combi-
nations and environments and are capable of changes or
modifications within the scope of the concepts as expressed
herein. Some variations may be embodied in combinations of
hardware, firmware, and/or software. Some variations may be
embodied at least in part on computer-readable storage media
such as memory chips, hard drives, flash memory, optical
storage media, or as fully or partially compiled programs
suitable for transmission to/download by/installation on vari-
ous hardware devices and/or combinations/collections of
hardware devices. Such variations are not to be regarded as
departure from the spirit and scope of the systems and solu-
tions discussed herein, and all such modifications as would be
obvious to one skilled in the art are intended to be included
within the scope of the following claims:

The invention claimed is:

1. A system comprising:

a processor;

a processor-readable memory having stored therein
instructions that cause the processor to perform a
method comprising the steps of:
receiving, at a web server, a content request from an

access device;
analyzing, at the web server, the received content request
to determine whether the received content request is
the same as a content request previously executed by
the web server;
in response to a determination that the received content
request is not the same as a previously-executed con-
tent request,
initiating serial execution of the received content
request;
create a trace or record of each processed remote
procedure call; and
store metadata representing the processed request and
the created trace or record,
in response to a determination that the received content
request is the same as a previously-executed content
request,
identifying one or more remote procedure calls that
can be separately executed in parallel with execu-
tion of the received content request based on the
previously executed content request, and
initiating the execution of said identified remote pro-
cedure calls in parallel with the serial execution of
the received content request;
locally caching, at the web server, data received in
response to the parallel execution of the identified
remote procedure calls; and
providing the cached data to the access device in
response to said serial execution of the received con-
tent request.

2. The system of claim 1, wherein the execution of said
identified remote procedure calls includes sending at least
one data request to at least one database at a data center for
execution.

US 9,292,341 B2

15

3. The system of claim 1, further comprising:

generating a request signature based on the received con-

tent request;

comparing the generated request signature to one or more

known or previously-generated request signatures to
determine whether the received content request is the
same as a content request previously executed by the
web server, the known or previously-generated request
signatures each being associated with a set of one or
more known or previously-executed remote procedure
calls, and

using the set of one or more known or previously-executed

remote procedure calls associated with the known or
previously-generated request signature to identify one
or more remote procedure calls that can be separately
executed in parallel with execution of the received con-
tent request.

4. The system of claim 3, where the received content
request includes information about an application originating
the content request; and

where the request signature is generated based on the infor-

mation about the application originating the content
request.

5. A computer-implemented method comprising:

receiving, at a web server, a content request from a data

access device;

generating a request signature from the received content

request;

comparing the generated request signature to at least one

known request signature, said known request signature
being associated with at least one known remote proce-
dure call;

in response to a determination that the generated request

signature does not match any known request signature,

initiating serial execution of the received content
request;

creating a trace or record of at least one processed
remote procedure call; and

storing the generated request signature along with cre-
ated trace or record;

in response to a determination that the generated request

signature matches the known request signature,

initiating the execution of said at least one known remote
procedure call associated with the known request sig-
nature in parallel with the serial execution of the
received content request;

locally caching, in a processor-readable memory of the

web server, data received in response to the parallel

execution of the identified remote procedure call; and
providing the cached data to the access device in response

to said serial execution of the received content request.

6. The method of claim 5, where the execution of said at
least one known remote procedure call includes sending at
least one data request to at least one database at a data center
for execution.

7. The method of claim 5, wherein the generated request
signature identifies all the remote procedure calls included in
the received content request; and

the step of comparing includes determining whether the

identified remote procedure calls match a known or pre-
viously executed set of remote procedure calls associ-
ated with a known request signature.

8. The method of claim 5, where the received content
request includes information about an application originating
the content request; and

10

20

25

30

35

40

45

50

55

60

16

where the request signature is generated based on the infor-
mation about the application originating the content
request.

9. The method of claim 5, where the step of comparing
includes comparing the generated request signature against
one or more known or previously-generated request signa-
tures, each of said known or previously-generated request
signatures being associated with a set of one or more previ-
ously-executed data requests.

10. The method of claim 9, where the known or previously-
generated request signatures are stored in said processor-
readable memory of the web server.

11. A system comprising:

a processor;

a processor-readable memory having stored therein
instructions that cause the processor to perform a
method comprising the steps of:
receiving a request for content from a requesting entity;
generating a request fingerprint based on the received

request for content;
first determining whether the generated request finger-
print matches a stored request fingerprint, the stored
fingerprint having a set of remote procedure calls
associated with it;
in response to a determination that the generated request
fingerprint does not match a stored request finger-
print,
initiating serial execution of the received content
request;
creating a trace or record of at least one processed
remote procedure call; and
storing the generated request fingerprint along with
the created trace or record,
in response to a determination that the generated request
fingerprint matches the stored request fingerprint,
initiating the remote procedure calls associated with
that stored request fingerprint in parallel, and
locally caching data received in response to the par-
allel execution of the remote procedure calls;
serially executing the received request after said first
determining step, said serial execution including, for
each remote procedure call included in the received
request,
attaching a result stub to the remote procedure call,
the result stub representing a placeholder for a
result of one of the remote procedure calls executed
in parallel;
determining whether said one of the remote procedure
calls executed in parallel has completed execution;
in response to a determination that said one of the
remote procedure calls executed in parallel has
completed execution, returning a result of said one
of the remote procedure calls executed in parallel
has completed execution to the result stub; and
in response to a determination that said one of the
remote procedure calls executed in parallel has not
completed execution, suspending serial execution
of the remote procedure call until said one of the
remote procedure calls executed in parallel has
completed execution and returning a result of the
completed one of the remote procedure calls
executed in parallel to the result stub; and

in response to all of said serially executed remote proce-
dure calls having a result, returning a request result to the
requesting entity based on the remote procedure call
results.

